SWAMP Bioassessment FY 06-07 Workplan (and beyond)

Outline

- > Define SWAMP
- > Intro to regulatory bioassessment
- > FY 06-07 SWAMP workplan
- > How it all fits together...

Surface Water Ambient Monitoring Program (SWAMP)

established 2000

In the beginning...

Why bioassessment?

- direct measure of integrity of aquatic life uses
- integrates water quality over time

Why bioassessment?

- > Clean Water Act, Section 101(a): "...restore and maintain the chemical, physical and biological integrity of the nation's waters..."
- > SWRCB's Strategic Plan (1997): "bioassessment monitoring program..."
- USEPA's CWA 106 funding
- "SWAMP Strategy" (2005)
- > SPARC (2006)

Tiered Aquatic Life Use Conceptual Model: Draft Biological Tiers -1

Key Points to Emphasize:

#1: The framework is conceptual

#2: Number of tiers to be determined by State or Tribe

#3: "Best Fit" approach recommended

#4: The framework may be quantitatively defined by many possible methods

Tier	Report Card	Potential Thresholds for defining boundaries between condition classes	Qualitative Description (5 classes)	Combined Qualitative Description (3 classes)	Compliance with biocriteria (for 305[b])	Compliance with biocriteria (for 303[d])
1	A	Median of reference range above type I / II balance	Very Good	Good	Supporting	Not Impaired
2	В	Balance of Type I and Type II statistical error	Good			
3	C	2 SD below mean of reference streams	Fair	Fair		
4	D	Median of test range below 2 SD reference threshold	Poor	Poor	Partially Supporting	Impaired
5	F	Below median of test sites below 2 SD reference threshold	Very Poor		Not Supporting	

Brief History of SWAMP Bioassessment

- Focus group formed in 2001 (contract for peer review)
- Peer review by Dr. M.Barbour & C.Hill (2002; final report Jan 2003) http://www.waterboards.ca.gov/swamp/reports.html
- Response to peer review (2003 ongoing; memo Feb 2004)
- SWAMP Strategy (2005) http://www.waterboards.ca.gov/swamp/docs/cw102swampcmas.pdf
- SPARC Review (2005-06)
 http://www.waterboards.ca.gov/swamp/docs/reports/sparc486_swampreview.pdf
- implement Strategy incl. standardized protocols (2007 & beyond)

1. "Statewide" Bioassessment

<u>Goal</u>: To provide a statewide assessment of biological integrity, and (hopefully) to advance biocriteria

2. Reference Site Management Plan

Goal: A consistent, coordinated, defensible approach to reference site sampling & management

- Reference sites: The backbone of bioassessment
- <u>Current selection criteria</u>: inconsistent, project-specific, ad hoc, often subjective, (SPARC!)
- Current sampling: project based, little assessment of spatial and temporal variation

Outcomes/products: plan that lays out:

- Statewide strategy for consistent selection criteria
- Timing & frequency of sampling
- Roles & responsibilities
- Data management

3. Reference Site Selection Tool

Goal: To produce a consistent, objective, defensible process (and tool) for selecting reference sites

- Identified as high priority by 2003 peer review
- Vision: GIS-based software application for managing stressor layers and threshold criteria
- Objective 5-step process, based on NHD+ (plus)

Outcomes/products: GIS-based tool for selecting reference sites throughout California

4. Periphyton Methods & Plan

Goal: Develop plan for coordinated, consistent approach to periphyton bioassessment

Tasks include:

- Convene key algal ecologists & regulators with experience/interest in periphyton-based bioassessment [responds to SPARC]
- Examine methods currently in use & determine best methods/approaches for California
- Define methods for field, lab, taxonomy
- Determine if methods comparison is needed

Outcomes/products: A detailed plan for a coordinated and consistent approach to periphyton bioassessment.

5. Data Management & Reporting Tools

<u>Goal</u>: To provide infrastructure & tools for collecting and interpreting bioassessment and physical habitat data

Outcomes/products:

- SWAMP Database (e.g., infrastructure to house bioassessment and physical habitat data)
- Tools for interpreting bioassessment data (e.g., calculate metrics & IBI scores)
- Data entry forms for physical habitat ("p-hab") data
- Tools for interpreting p-hab data (particle size distributions, D50 particle sizes, discharge, riparian vegetative condition, instream condition, human disturbance index, etc.)
- QA/QC data management applications (coordinate with SWAMP QA Team)
- <u>SAFIT</u> (update Tax Effort docs, conduct tax workshops, develop proposal for future years)
 <u>Slide</u> # 15

6. QA Field Days

<u>Goal</u>: Standardize collection of field data; improve inter-lab consistency; quantify "observer error"

- Write plan for QA Field Days
- Organize first event
- Pay for facility, travel
- > Analyze data; prepare report

Outcomes/products: Field inter-calibration report; defensible QA program and consistent field data collection

7. Sediment Stressor Analysis Tools

- Goal: Association of BMIs with fine sediment impairment:
 1) improve separation of physical vs. WQ impairment;
 2) identify impairment thresholds; 3) derive p-hab targets
 - Integrates: 1) field sampling; 2) stream mesocosm experiments;3) lab microcosm experiments
 - Joint effort between SWAMP and TMDL program

Outcomes/products: 1) Ability to identify key physical stressor (i.e., sediment quantity); 2) Field- & lab-derived sediment tolerance values for BMIs; 3) cross-validations for ongoing data mining tolerance value studies

8. Bioassessment Coordinator Support

<u>Goal</u>: To facilitate a coordinated, modern bioassessment program for SWAMP

Need identified by peer review in 2003

<u>Outcomes/products</u>:

A ship with a captain

